Contact information

Skywarden,
Ursa Astronomical Association
Kopernikuksentie 1
00130 Helsinki
taivaanvahti(at)ursa.fi

Ursa Astronomical Association

Active aurora band - 5.10.2020 at 21.30 - 5.10.2020 at 22.30 Vähäkyrö Observation number 94340

Visibility III / V


5.10.2020 the moon would shine quite a bit. During the evening drive, I noticed that the northern lights were starting to show. At first there was a subtle arc of northern lights visible to the naked eye. I took pictures and tried different exposures under the flashlight. After just over half an hour, I was already gathering a camera in the car when I noticed that the sky was starting to pick up. Nothing but suddenly the camera is in place and taking pictures. The camera showed the top red in the first northern lights belt images, but I don’t remember if it was visible to the naked eye. At some point before the belt turned spiral, red was visible at the bottom, including the eyes. The fog rose to the fields. I took pictures from a few directions. Shortly before half past eleven I noticed that to the far left of the Northern Lights front was a green "line." It gradually strengthened. The camera detected a hint of red line included, would it be SAR? The main picture has a shutter speed of 6 sec and a big 3200. It showed the situation best. Then the clouds rolled forward and I went home.



More similar observations
Additional information
  • Aurora brightness
    • Bright auroras
  • Observed aurora forms
    • Arc info

      ARC The arcs are wider than the bands and do not fold as strongly. The arcs are normally neither very bright nor active.

      The arc is probably the most common form of aurora. When aurora show is a calm arc in the low northern sky it often doesn’t evolve to anything more during night. In more active shows the arc is often the first form to appear and the last to disappear.

      The lower edge of the arc is usually sharp but the upper edge can gradually blend into the background sky. As activity increases rays and folds normally develop, and the arcs turn gradually into bands.

      An aurora arc runs across the picture. Vertical shapes are rays. Photo by Atacan Ergin.

      Aurora Arc. Photo by Mauri Korpi.

      Aurora Arc. Photo by Anna-Liisa Sarajärvi.

      Aurora Arc. Photo by Matti Asumalahti.

    • Band info

      Bands are usually narrower, more twisty at the bottom, brighter, and more active than arches. Bands usually develop from arches.

      Bands can form J and U shapes, sometimes even full spirals. The corona can also arise from bands. Bands are a fairly common form of aurora.

      Aurora band. Photo by Merja Ruotsalainen.

      Aurora band. Photo by Matias Takala.

      Aurora band. Photo by Lea Rahtu-Korpela.

      Aurora bands. Photo by Lauri Koivuluoma.

      Aurora band. Photo by Matias Takala.

    • Rays info

      The raysare parallel to the lines of force of the magnetic field, i.e. quite vertical, usually less than one degree thick light streaks. The rays can occur alone or in connection with other shapes, mainly with arcs and bands. Short rays are usually brightest at the bottom but dim quickly. The longest rays, even extending almost from the horizon to the zenith, are usually uniformly bright and quite calm, and unlike the shorter rays, most often occur in groups of a few rays or alone. Rays, like bands, are a very typical form of aurora.

      Artificial light pillars, which are a halo phenomenon visible in ice mist, can sometimes be very similar to the rays of aurora. Confusion is possible especially when the lamps that cause the artificial light pillars are far away and not visible behind buildings or the forest. The nature of the phenomenon is clear at least from the photographs.

      Rays. Picture of Tom Eklund.

      Rays. Photo by Mika Puurula.

      Two beams rise from the aurora veil. Photo by Anssi Mäntylä.

      Two radial bands. Show Jani Lauanne.

      Radial band and veil. Photo by Jussi Alanenpää.

      Two rays. Photo by Aki Taavitsainen.

      It may be possible to confuse such rays with artificial light columns. Compare the image below. Picture of Tom Eklund.

      There is no aurora in this image, but all the light poles - including the wide and diffuse bar seen at the top left - are artificial light pillars born of ice mist. Photo by Sami Jumppanen.

      Aurora and artificial light pillars. All the radial shapes in the picture above are probably artificial light pillars that coincide appropriately with the aurora band. In the image below, the aurora band has shifted and does not overlap with the pillars produced by the orange bulbs. There is no orange in auroras. Photo by Katariina Roiha

    • Stable Auroral Red (SAR) arc info

      The Stable Auroral Red arcs (SAR arcs)  are usually clearly distanced to the south from the aurora oval and is a very opaque and normally red ribbon. In most cases SAR arcs are only visible in the photo or on the liveview screen of the SLR camera. Using a camera with very high sensitivity is the best method for capturing these faint arcs. The arch usually settles between east and west.

      A stable red arc of aurora is a rare phenomenon. In some rare occasions, several SAR arcs may be simultaneously visible.

      The first SAR arcs of the Skywarden were observed on nights between November 3-4. and 4-5. days in 2015 in the latitudes of central Finland.   

      SAR
      SAR arc photographed by Lasse Nurminen 2018. Observation of the Skywarden 79113.

    • Red Arc with Green Diffuse Aurora (RAGDA) info

      Red Arc with Green Diffuse Aurora (RAGDA), is a two-component form of northern lights that occurs south of the oval.

      Both parts of the aurora are formed when positive particles from the magnetosphere hit the Earth's upper atmosphere. The phenomenon occurs before magnetic midnight during large aurora substorms and is best distinguished when it deteches southward from the bright rays of the substorm aurora.

      The phenomenon consists of a faint red arc, which looks a lot like a Stable Auroral Red (SAR)-arc. The common factor for these two red arcs is the reaction of the ring current with the substorm.

      Antero Ohranen, RAGDA
      A Red Arc with Green Diffuse Aurora
      Photo: Antero Ohranen

       

      Below the red arc are green diffuse patches or sausage-like shapes. RAGDA's green aurora is essentially featureless and without any rays. It may appear slightly more bluish in camera images compared to the green aurora of the oval.

      Lasse Nurminen, RAGDA
      RAGDA's green has slightly more bluish shade than the rest of the oval.
      Photo: Lasse Nurminen

       

      Sometimes the red arc and the green patches are clearly separated from the aurora oval and sometimes almost in contact with the southward edge of the oval.

      During an active substorm, the green northern lights can sometimes be seen with red tops. These usually have rays that RAGDA's green aurora lacks.

      An emissionless gap without any aurora light can be observed between the red arc and green diffuse aurora. The two features don't seem to be connected. Of the two aligned structures, the red one is located ~ 100 kilometers higher than the green aurora.

      Markku Ruonala, RAGDA
      There seems to be an empty area without any aurora light between the red and green aurora.
      Photo: Markku Ruonala

       

      The event is dynamic. It sometimes starts with green blobs, then a red arc appears. These two can also appear in the sky at the same time. The shapes move often from east to west. Then the Red Arc with Green Diffuse Aurora fades away and only the red arc remains visible in the sky. The red arc is recognized as the SAR arc.

      Observing this phenomenon is easier when the night sky is clear and dark before magnetic midnight. When looking for the red arc with green diffuse aurora, the best results can be achieved by pointing the camera towards south or southwest of the brightest part of the oval.

      A wide-angle lens is recommended for photographing the shape of the red arc going over the sky, but a regular lens can also be used. The red arc is quite dim, so the exposure times needed are typically longer than the ones for northern lights.

      Pirjo Koski, RAGDA
      Two RAGDA-arcs
      Photo: Pirjo Koski

       

      If the red arc cannot be distinguished in the images, the phenomenon identification 'Diffuse green auroras' should be used for isolated hazy green blobs/arc.

      Matias Takala, RAGDA
      Dunes in RAGDA's green aurora
      Photo: Matias Takala

       

  • Colors with unaided eye and other features
    • Green auroras info

      Green, seen with the naked eye, is one the most common colors of the aurora. The green color is derived from atomic oxygen.

      Green auroras. Lea Rahtu-Korpela.

      Green auroras. Photo by Juha Ojanperä.

    • Red coloration of the shapes lower edge info

      Red lower edge visible with the naked eye. The bands which are starting to level up their activity and are green colored have quite often a narrow red lower edge. This is the most common form of red color which is derived from molecular nitrogen.

      Aurora band with purple lower edge. Photo by Ilmo Kemppainen.

      The low hanging brightest aurora band is colored red at the lower edge. Photo by Tero Ohranen.

      Narrow purple reddish tones at the lower part of this aurora band. Photo by Merja Ruotsalainen.

      Purple band at the bottom. Photo by Panu Lahtinen.

Send a comment

Comments are checked and moderated before publication If you want to contact the observer directly about possibilities to use these images, use the Media -form.

*

*

*
characters left

By sending in this comment I confirm, that I've read and understood the the observation system's privacy policy.