Contact information

Skywarden,
Ursa Astronomical Association
Kopernikuksentie 1
00130 Helsinki
taivaanvahti(at)ursa.fi

Ursa Astronomical Association

Rare halos - 13.12.2015 at 22.00 Sievi Observation number 46353

Visibility IV / V


13.12 In Sievi, Louekallio started snowshoeing on the slopes and by chance I noticed from Facebook that they have launched cannons.

A wolf to a place where the play was just beginning.

Upon entering the slope, weak pillars were visible on the slope and no ice mist was found elsewhere. I drove to the shooting range behind the slope with the first picture. For a while, halos appeared on the shooting range until the wind direction changed.

After that, the cat mouse started playing with the ice mist.

When I left to explore the area, the fog had taken over about six miles of the area. So it was expected that the fog would nucleate at any moment. It was just over -10 degrees below zero.

After a short drive, the first Scene was found in a field next to the highway.

The situation changed really quickly. The direction of the wind changed every short time and the crystals from the slope changed in even minute cycles. When you notice your next tile play in a minute, you will notice that the columns have taken over the sky.

The next 3 pictures are from the same field.

The lamp was on a feeder just over a meter high and with the camera I was maybe about 50m away from the lamp.

In the beginning, for a while, a marvelous "super-Sauri" Pole with curved outward-curving arches was visible on both sides of the Pillar. The first thing that came to mind was the Christmas curves described by Ruoskanen, but it may be that light has been reflected from the ground above the snow layer.

Luomanen has previously described a similar situation.

http://jari.pic.fi/kuvat/Atmospheric+phenomena+and+sky/Atmospheric+halos/2014_01_19-20+Lunar+and+lamp+halos/_MG_2061-_MG_2068.jpg

Also the diffraction pillar was visible and it is shown in the allsky picture on the opposite side. The diffraction pillar was also visible in Rovaniemi earlier in November.



More similar observations
Additional information
  • The halo was caused by lightsource:
    • Artificial light source
  • Where are the ice crystals of the halo located?
    • Ice crystals
  • Harvinaiset halomuodot (keinovalo)
    • Kern arc info

      Kernin kaari on zeniitinympäristön kaarta ympyräksi täydentävä himmeä ja värillinen halo. Se ei ole tasakirkkautinen, vaan siinä on kaksi kirkkaampaa kohtaa.

      Luonnollisella valonlähteellä Kern on onnistuttu tähän mennessä kuvaamaan vain kerran. Tämä tapahtui marraskuussa 2007 Sotkamossa. Kernin kaari näkyy selvästi pinotuissa kuvissa, yksittäisissä kuvissa sen erottuminen on tulkinnanvaraista.

      Tämän jälkeen Kernin kaari on saatu valokuvattua myös käyttämällä valonlähteenä kirkasta kohdevaloa jääsumussa.

      Kernin kaaren kuvaaminen on jatkossakin lähinnä vihkyityneiden harrastajien heiniä, sillä halon sijaitsee korkealla taivaalla alueella jota satunnaisten kuvaajien otokset hyvin harvoin kattavat.

      Historiallisten halonäytelmien piirroksista vain muutama vaikuttaa sellaiselta jossa Kernin kaari olisi oikeasti saattanut olla näkyvillä.  

      Kernin kaari syntyy samassa asennossa leijailevissa kiteissä kuin sivuaurinko ja zeniitinympäristön kaari. Sitä kannattaa yrittää nähdä kun nämä halot ovat erityisen näyttäviä. Kupera peili, joka tiivistää halot paremmin näkyville, on merkittävä apu himmeiden halojen havaitsemisessa. Simulaatioissa Kernin kaari tulee sitä paremmin esiin mitä matalammalla Aurinko on.  

       

      Kernin kaari jääsumuun syntyneessä halonäytelmässä. Kuva on keskiarvopino 30 yksittäisestä kuvasta. Halonäytelmässä oli myös 44° sivuauringot, joskaan tässä ne eivät erotu. Kuva Marko Mikkilä.

       

      Tässä kirkkaalla lampulla jääsumuun luodussa halonäytelmässä näkyy hyvin heikosti osa Kernin kaarta. Halo on päällekkäin valkean aurinkokaaren kanssa, mutta erottuu siitä heikolla värityksellään. Alavasta-aurinkokaaren ja aurinkokaaren välissä kuvan poikki kulkeva intensiteettiraja on sinirengas. Kuva Marko Riikonen.

       

      Simulaatiot Kernin kaaresta ja zeniitinympäristön kaaresta neljälle valonlähteen korkeudelle. Halo heikkenee valonlähteen korkeuden kasvaessa. Simulaatiossa on käytetty säännöllisen kuusikulmion muotoisia laattakiteitä, joiden pituus-leveyssuhde on 0.5. Simulaatio-ohjelma: HaloPoint.

    • Suncave Schulthess arc info

      Kovera Schulthessin kaari on simulaatiossa pitkä, sivuaurinkojen ja alasivuaurinkojen kohdan leikkaava valonlähteeseen nähden loivasti kupera kaari. Se on yksi Schulthessin kaaren kolmesta osamuodosta.

      Yleensä koverasta Schulthessin kaaresta nähdään vain sivuauringosta ylöspäin nouseva osa. Maanpinnalta koveraa Schulthessin kaarta on nähty vain jääsumussa. Lentokoneesta on saatu muutamia valokuvia, joissa halo ilmenee alasivuauringon yhteydessä.

      Schulthessin kaaren voinee nähdä jääsumussa noin kerran talvessa. Sitä on havaittu myös käyttämällä jääsumussa valonlähteenä kirkasta lamppua. Tällöin kaaret voivat olla hyvin pitkiä, ulottuen jopa 46° renkaan etäisyydelle saakka.

      Toistaiseksi halosta on havaittu vain kahta osamuotoa, koveraa ja kuperaa. Yleensä näkyvillä on näistä vain toinen.

       

      Kuperan ja koveran Schulthessin kaaren sisältävä Kuun jääsumuhalonäytelmä. Kuva Jari Luomanen.

       

      Kupera (vasen nuoli) ja kovera (oikea nuoli) Schulthessin kaari kirkkaalla lampulla jääsumuun luodussa halonäytelmässä. Värikäs halo kuvan yläosassa on zeniitinympäristönkaari. Kuva Jukka Ruoskanen.  

       

      Simulaatiot Schulthessin kaarista kolmelle valonlähteen korkeudelle. Osamuodot ovat kupera (ku), kovera (ko) ja terävä (te). Apukuviona 22° rengas. Schulthessin kaarten teoriassa on vielä tarkentamisen varaa, sillä simulaatioissa näkyville tulee  kaikki osamuodot, mutta luonnossa havaitaan tavallisesti vain yksi. Oikeassa alakulmassa on simulaatioissa käytetty kide ja halon sivuaurinkojen yläpuolella näkyvän osan valonreitti. Schulthessin kaari syntyy ohuissa kiteissä jotka leijailevat niin sanotussa laatta-Lowitz -asennossa. Simulaatio-ohjelma: HaloPoint.

    • Wegener anthelic arcs info

      Wegenerin vasta-aurinkokaari on laaja-alainen halo, josta yleensä nähdään vain horisonttirenkaan yläpuolella olevia osia. Se on tavallisesti valkoinen, mutta parhaimmillaan siinä erottuu haaleita spektrin värejä. 

      Kuten muutkin vasta-aurinkokaaret, myös Wegener risteää itseään vasta-aurinkopisteessä. Näin ei kuitenkaan luonnossa tavallisesti tapahdu ennenkuin Aurinko on yli 50 asteen korkeudella.

      Wegenerin vasta-aurinkokaari syntyy samoissa kiteissä kuin 22° ja 46° sivuavat kaaret. Jos nämä halot puuttuvat, ei Wegenerin vasta-aurinkokaartakaan synny. Myös horisonttirengas on erottamaton osa Wegenerin sisältäviä halonäytelmiä.

      Wegener on mahdollista nähdä yläpilvissä muutaman kerran vuosikymmennessä, mutta se jää helposti huomaamatta pilvikuitujen seasta. Kupera peili, joka tiivistää halot paremmin näkyville, on hyvä olla taskussa kun Wegeneriä alkaa taivaalta etsimään.

      Monesti halo löydetään vasta valokuvista. Helpoiten sen saa yläpilvistä esiin jos ottaa halonäytelmästä useita valokuvia peräkkäin jalustalta ja pinoaa ne yhdeksi keskiarvokuvaksi.  

      Ehkä paras mahdollisuus Wegenerin vasta-aurinkokaaren näkemiseksi on laskettelurinteiden lumitykityksistä muodostuneessa jääsumussa, varsinkin silloin jos halonäytelmän valonlähteenä on mahdollista käyttää kirkasta kohdevaloa.

       

      Tässä Kuun jääsumuhalonäytelmässä nähtiin erityisen pitkä Wegenerin vasta-aurinkokaari. Horisonttirenkaan yläpuolella se muodostaa täyden loopin ja alapuolellakin ulottuu aina alaprimääriin Tapen kaareen saakka. Kuva Jari Luomanen.

       

      Jääsumuhalonäytelmä Wegenerin vasta-aurinkokaarella. Kuva Olli Sälevä.

       

      Lyhyt Wegenerin vasta-aurinkokaaren pätkä yläpilveen syntyneessä halonäytelmässä. Vaikka halo oli heikosti värillinen, se jäi silti huomaamatta havaintotilanteessa. Kuva Marko Riikonen.

       

      Wegenerin vasta-aurinkokaari näkyy useiden muiden halojen ohella kirkkaalla lampulla jääsumuun luodussa halonäytelmässä. Lampun korkeus on 5 astetta. Kuva Marko Riikonen.

       

       

      Simulaatiot Wegenerin vasta-aurinkokaaresta neljälle valonlähteen korkeudelle. Mukana on myös Wegenerin kanssa aina näkyvät seuraishalot, eli 46° ja 22° sivuavat kaaret sekä horisonttirengas. Wegenerin vasta-aurinkokaari sivuaa teoriassa 22° sivuavaa kaarta sen ylä- ja alaosassa. Simulaatio-ohjelma: HaloPoint.

    • Helic arc info

      Aurinkokaari on pitkä valkea kaari, joka risteää itsensä valonlähteessä. Aurinkokaaren esiintymiset voidaan jakaa kahteen tyyppiin: niihin jotka näkyvät Parryn kaaren kanssa ja niihin jotka näkyvät ilman sitä.  

      Parryn kaaren seurana näkyvää aurinkokaarta voidaan kutsua klassiseksi aurinkokaareksi, sillä tiedämme kuinka se syntyy: se syntyy samoista Parry-asennossa leijailevista kiteistä kuin Parryn kaarikin. Näin muodostunut aurinkokaari ilmenee yleensä pitkänä kaarena joka parhaimmillaan muodostaa täyden loopin valonlähteen päällä (kuitenkaan hyvin korkealla Auringolla halo ei risteä valonlähteessä ja näkyy valonlähteen alapuolella).

      Yläpilvissä klassinen aurinkokaari on erittäin harvinainen, lumitykkien muodostamissa jääsumuissa sensijaan Parry-asennon aiheuttama aurinkokaari on nähtävissä huomattavasti useammin, varsinkin jos käyttää valonlähteenä kirkasta kohdevaloa.

      Ilman Parryn kaarta esiintyviä aurinkokaaria nähdään pelkästään jääsumussa. Tällaiset aurinkokaaret ilmenevät Auringosta ylöspäin nousevina lyhyinä, 22° renkaan sisäpuolelle rajoittuneina kaaren pätkinä. Niitä on nähty jopa pelkän auringonpilarin seurassa. Ei tiedetä millainen kide aiheuttaa tällaisia aurinkokaaria.


       

      Aurinkokaari muodostaa täyden Auringossa risteävän loopin tässä halonäytelmässä. Kuva Marko Riikonen.

       

      Jääsumuun syntynyt halonäytelmä aurinkokaarella. Myös monia muita haloja on nähtävissä, osa näistä on merkitty kuvaan. Vaikka tästä kuvasta ei käy ilmi, aurinkokaari teki halonäytelmässä täyden loopin Kuun yläpuolella. Kuva Jari Luomanen.

       

       

      Simulaatiot aurinkokaaresta (nuoli) neljälle valonlähteen korkeudelle. Kalansilmänäkymä kattaa koko horisontin yläpuolisen taivaan. Apukuviona ovat 22° ja 46° renkaat. Aurinkokaari ei risteä valonlähdettä yli 60° asteen valonlähteen korkeudella. Simulaatio-ohjelma: HaloPoint.  

    • Upper primary Tape arc info

      Yläprimääri Tapen kaari on valonlähteestä yläviistoon näkyvä kirkastuma, joka tyypillisesti esiintyy 46° ylläsivuavalla kaarella. Parhaimmillaan yläprimäärissä Tapen kaaressa ilmenee väkäsmäistä, simulaatioiden ennustamaa muotoa. Halon kanssa esiintyy normaalisti myös Parryn kaari, sillä molemmat halot syntyvät samassa Parry-asennossa leijailevista jääkiteistä. Parry-kiteitä sisältävien pilvien pienialaisuus voi kuitenkin olla esteenä näiden halojen samanaikaiselle näkymiselle.  

      Yläprimääri Tapen kaari havaitaan pääasiassa lumitykkien synnyttämissä jääsumuissa, yläpilvissä se on huomattavasti harvinaisempi. Aktiivinen harrastaja voi bongata sen laskettelurinteiden jääsumuista ainakin kerran talvessa.

      Yläprimäärin Tapen kaaren voi nähdä myös auton kuuraisessa tuulilasissa. Parhaiten tällaiset pintahalot saadaan esiin pimeällä käyttämällä valonlähteenä kirkasta taskulamppua.

      Tapen kaarille on käytetty myös nimeä 46° Parryn kaaret. 

       

      Yläprimääri Tapen kaari (nuolet) on yleensä melko epämääräinen kirkastuma 46° ylläsivuavalla kaarella, mutta tässä halonäytelmässä siinä erottuu simulaatioiden ennustamaa väkäsmäistä muotoa. Kuva Sauli Koski.

       

      Yläpilvissä näkyvän yläprimääriksi Tapen kaareksi sopivan spektrikirkastuman tulkinta ei ole aina suoraviivaista, sillä kyseessä voi olla myös pilvien rajaama 46° ylläsivuavan kaaren pätkä. Jos halonäytelmässä on samoihin aikoihin esiintynyt Parryn kaari, on yläprimäärin Tapen kaaren tulkinta vahvemmalla pohjalla, sillä halot syntyvät samoista Parry-asennossa leijailevista kiteistä. Tässä näkyvillä onkin Parryn yläkupera osamuoto, mutta se ei erotu hyvin infoboxin pienikokoisesta kuvasta. Kuvan kontrastia on vahvistettu runsaasti. Kuva Reima Eresmaa.  

       

      Yläprimääri Tapen kaari tuulilasin kuurakiteiden halonäytelmässä. Zyk tarkoittaa zeniitinympäristönkaarta. Valona on kirkas led-lamppu. Havaintotilanteessa hyvin selkeät tuulilasihalot heikkenevät merkittävästi valokuvissa, paras tapa niiden dokumentoimiseksi on videokuvaus. Kuva Jari Luomanen.

       

      Simulaatiot yläprimäärin Tapen kaaren väkäsistä neljälle Auringon korkeudelle. Vertailukuvioina ovat 46° ylläsivuava kaari ja 22° ja 46° renkaat. Yläprimääri Tapen kaari ja 46° ylläsivuava kaari eivät näy 32 astetta suuremmilla valonlähteen korkeuksilla. Simulaatio-ohjelma: HaloPoint.

    • 120° parhelia info

      120° sivuauringot sijaitsevat 120° keskuskulmaetäisyydellä Auringosta. Tyypillisesti ne nähdään horisonttirenkalla. Varsinkin matalalla Auringolla 120° sivuauringot voivat esiintyä myös ilman horisonttirengasta. Tällöin 120° sivuauringot saattavat olla pilarimaisia, normaalisti halo on muodoltaan suurinpiirtein pyöreä.

      Horisonttirenkaan lisäksi 120° sivuauringon seuralaishaloihin kuuluvat sivuauringot, tosin sopivan jääkidealueen ollessa pienialainen ne eivät näy välttämättä samanaikaisesti. Sivuauringot ja 120° sivuauringot muodostuvat laatan muotoisissa jääkiteissä, mutta horisonttirengas voi muodostua myös pylvään muotoisissa kiteissä. Nämä kiteet leijailevat eri asennoissa ja jälkimmäisessä tapauksessa horisonttirenkaan yhteydessä ei näy 120° sivuaurinkoja.

      Erikoinen paikka nähdä 120° sivuaurinko on auton kuurainen tuulilasi. Parhaiten tuulilasihalot tulevat esiin käyttämällä valonlähteenä pimeällä kirkasta taskulamppua.

      120° sivuauringon voi nähdä taivaalla noin 1-3 kertaa vuodessa. Horisonttirenkaalla näkyy helposti myös pilvikirkastumia jotka saattavat muistuttaa 120° sivuaurinkoa. 

       

      120° sivuaurinko näkyy kirkkaampana kohtana horisonttirenkaalla. Kuva Samuli Vuorinen.

       

      120° sivuaurinko ilmenee kirkastumana cirruksen harjassa. Tällainen jää helposti huomaamatta, mutta jos pilvi on aiheuttanut ensin kirkkaan sivuauringon, tällöin voi odotella josko se pikku tuurilla lipuisi 120° sivuauringon kohdalle. Kuva Jari Luomanen.  

       

      Horisonttirenkaan päässä on kirkastumana 120° sivuaurinko (nuoli). Kuva Jarmo Leskinen.

       

      Jääsumuun syntynyt halonäytelmä 120° sivuauringolla. Zyk tarkoittaa zeniitinympäristönkaarta. Kuva Marko Riikonen. 

  • Yleiset halomuodot (keinovalo)
    • 46° supralateral arc info

      46° sivuava kaari jakautuu yllä- ja allasivuavaan osamuotoon. 46° ylläsivuava kaari on aurinkoon nähden kovera laaja-alainen kaari. Sen erottaminen 46° renkaasta ei ole aina ongelmatonta.

      Ongelmaa ei tietenkään ole jos 46° rengas ja 46° ylläsivuava kaari näkyvät selkeästi toisistaan erillään. Yleensä kuitenkin näkyvillä on vain yksi halo. Tällöin ensimmäinen seikka johon kannattaa kiinnittää halossa huomiota on halon värikkyys ja terävyys. 46° ylläsivuava on aina värikylläisempi ja terävämpi kuin 46° rengas joka on väreiltään hailakka ja muutenkin diffuusimpi.

      Toinen huomioitava seikka on 22° ylläsivuava kaari. 46° ylläsivuava -tulkinta on vahvoilla jos halonäytelmässä on terävä 22° ylläsivuava kaari. Jos kuitenkin 22° ylläsivuava on epämääräinen, tällöin halo 46 asteen etäisyydellä on ennemminkin 46° rengas. Tämä on nähtävissä tietokonesimulaatioissa: samat jääkiteet jotka epävakaan leijailuasennon seurauksena tuottavat heikosti kehittyneen 22° ylläsivuavan kaaren synnyttävät 46° renkaan  - eivät 46° ylläsivuavaa. Simulaatioista ilmenee, kuinka jääkiteiden heilahtelun lisääntyessä 46° ylläsivuava kaari muuttuu huomattavasti aiemmin 46° renkaaksi kuin 22° sivuava kaari muuttuu 22° renkaaksi. Suora päättely 22° ylläsivuava kaari = 46° ylläsivuava kaari, ei siis toimi, on myös katsottava kuinka kehittynyt 22° ylläsivuava kaari on.  

      Läheskään aina kategorisointia ei kuitenkaan kaikista neuvoista huolimatta pysty tekemään ja on makuasia merkitseekö rastin 46° ylläsivuavan, 46° renkaan vai molempien ruutuun. Tämä epävarmuus on odotettavissa haloilta jotka vaihettuvat tasaisesti toisikseen jääkiteen leijailuasennon epävakauden mukaan.

      46° ylläsivuava kaari sivuaa aina zeniitinympäristön kaarta. Molemmat halot katoavat kun Aurinko nousee 32 astetta korkeammalle. 46° rengas on zeniitinympäristön kaaresta erillään matalammilla Auringon korkeuksilla kuin noin 16 astetta ja suuremmilla kuin noin 29 astetta. 

      46° ylläsivuavan kaaren voi Suomessa nähdä noin 5-10 kertaa vuodessa.

       

      Halonäytelmä yläpilvissä 46° ylläsivuavalla kaarella. Lievä intensiteentin lisäys 46° ylläsivuavan kaaren yläosassa saattaa olla heikon zeniitinympäristön kaaren aikaansaamaa. Kuva Jari Luomanen. 

       

      Tässä jääsumuhalonäytelmässä näkyvillä ovat harvinaisella tavalla sekä 46° ylläsivuava kaari että 46° rengas. Aurinko on sen verran matalalla, että zeniitinympäristönkaari (zyk) on 46° renkaasta erillään. 46° ylläsivuavassa kaaressa se sensijaan on aina kiinni . Kuva Olli Sälevä.

       

      46° ylläsivuava kaari ja 46° rengas ovat selkeitä tässä kirkkaalla lampulla jääsumuun luodussa halonäytelmässä. Lamppua vastapäätä kuvan yläosassa näkyy sekä diffuusit että Trickerin vasta-aurinkokaaret. Ympäristön ulkovalaisimista nousee pilareita, joista monet ovat jakautuneet päistään merkkinä 22° ylläsivuavasta kaaresta. Kuva Marko Riikonen.

       

      Simulaatiot täydellisesti kehittyneistä 46° sivuavista kaarista. 46° ylläsivuava kaari on aina valonlähteeseen nähden kovera kaari, eikä sitä näy valonlähteen ollessa yli 32 asteen korkeudella. 46° allasivuava kaari on valonlähteeseen nähden kupera kaari noin 50° korkeudelle saakka. Suuremmilla valonlähteen korkeuksilla sen muoto on valonlähteeseen nähden kovera. Viivalla on piirretty 46° rengas ja horisontti. Simulaatio-ohjelma HaloPoint. 

    • Parhelic circle info

      Horisonttirengas on valonlähteen tasossa taivaan ympäri kiertävä valkea rengas. Ilmiö on harvoin täydellinen, yleensä siitä havaitaan vain osia. Taivasta kannattaa pitää silmällä horisonttirenkaan varalta varsinkin silloin kun sivuauringot tai 22° sivuava kaari ovat kirkkaita.

      Jääsumussa ulkovalon alla näkyvä horisonttirengas kiertää erillisistä kiteistä muodostuvana pintana havaitsijan ympäri. Se näyttää olevan vastapuolella lamppua matalammalla. Hyvin korkean pylvään päässä olevan valaisimen (esimerkiksi lastausalueella) alle jääkidemassaa mahtuu enemmän, jolloin horisonttirengas saattaa näkyä vaikuttavana, erillisistä kiteistä koostuvana suppilona pään päällä.

      Erikoinen paikka nähdä horisonttirengas on auton kuurainen tuulilasi. Tuulilasihalot ovat parhaiten havaittavissa pimeällä kun valonlähteenä käytetään kirkasta taskulamppua. 

      Auringon tai Kuun valossa horisonttirenkaan voi havaita taivaalla noin 10 kertaa vuodessa. Tykkilumetuksen muodostamissa jääsumuissa se näkyy ulkovalaisimien alla varsin helposti.

       

      Täysi horisonttirengas yläpilvessä. Kuvan alaosassa näkyvät myös sivuauringot ja Auringon päällä 22° ylläsivuava kaari. Kuva Måns Hagberg.

       

      Täysi horisonttirengas (nuoli) Kuun jääsumuhalonäytelmässä. Kuva Jari Luomanen.

       

      Alapilven raosta paljastunut horisonttirenkaan pätkä. Kuva Olli Sälevä.

       

      Tämän halonäytelmän horisonttirengas oli rajautunut harvinaisella tavalla Auringon läheisyyteen ja se muodosti yhdessä pilarin kanssa taivaalle ristin. Halot syntyivät jääkiteiksi muuttuneisiin alapilviin. Sensijaan 22° ylläsivuava kaari oli yläpilvessä. Kuva Marko Riikonen.   

       

      Horisonttirengas läpäisee kirkaan sivuauringon. Sivuaurinko itsessään voi simulaatioiden perusteella jatkua noin 20 astetta Auringosta poispäin, mutta tätä pidempi pätkä on aina horisonttirengasta. Samoin sivuauringosta Aurinkoon päin jatkuva pätkä on aina horisonttirengasta. Tyypillisesti Aurinkoa kohti horisonttirengas on himmeämpi, kuten tässäkin kuvassa. Kuva Sami Jumppanen.  

       

      Täysi horisonttirengas jääsumussa. Alla on halonäytelmästä simulaatio. Kuva Marko Riikonen.

       

      Horisonttirengas auton kuuraisessa tuulilasissa. Valona on kirkas led-lamppu. Kuvassa näkyy myös yläkovera Parryn kaari. Kuva Marko Riikonen.

       

      Jääsumussa lampuista jatkuvat vaakasuorat valoviivat eivät ole horisonttirenkaan pätkiä, vaan kyse on sivuauringoista, jotka ulkovaloilla ilmenevät tällä erikoisella tavalla. Horisonttirenkaan havaitsemiseksi on mentävä aivan lampun alle ja se näkyy aina erillisistä kiteistä muodostuneena pintana. Kuva Mika Aho. 

    • Cirkumzenith arc info

      Zeniitinympäristön kaari on värikäs, korkealla taivaalla näkyvä halo, joka kiertää taivaan lakipistettä. Halon korkean sijainnin vuoksi on sen näkemiseksi kallistettava päätä takakenoon. Sivuauringot antavat vihjeen zeniitinympäristön kaaren mahdollisuudesta, sillä nämä halot syntyvät samoista jääkiteistä.

      Zeniitinympäristön kaari ei esiinny valonlähteen ollessa yli 32 asteen korkeudella. Halon etäisyys valonlähteesta vaihtelee jonkin verran valonlähteen korkeuden mukaan. Se on kiinni 46° renkaassa valonlähteen korkeuskulmilla noin 16 - 28 astetta. Tätä suuremmilla ja alemmilla valonlähteen korkeuksilla se on siitä irti. 46° ylläsivuavaa kaarta zeniitinympäristönkaari sivuaa aina.

      Zeniitinympäristön kaaren voi havaita noin 30 kertaa vuodessa, mutta suurin osa esiintymisistä on varsin lyhytaikaisia ja verraten vaatimattomia. Harvinaiset kaikkein voimakkaimmat zeniitinympäristön kaaret ovat suurenmoista nähtävää.  

      Jääsumussa ulkovalaisinten valossa zeniitinympäristön kaari ilmenee kolmiulotteisena pintana, joka kaartuu silmien edestä kohti lamppua. Sen voi ulkovalaisimilla nähdä vaikka lamppu olisi yli 32 asteen korkeudella.

      Zeniitinympäristön kaari on mahdollista havaita myös kuuraisessa auton tuulilasissa. Tuulilasihalot saadaan dramaattisimmin esille pimeän aikaan käyttämällä valonlähteenä kirkasta taskulamppua. 

       

      Erittäin kirkas zeniitinympäristön kaari. Tällaisen näkemiseen voi aktiiviharrastajaltakin mennä vuosikymmeniä. Kuva Ari Laine. 

       

      Tässä jääsumuhalonäytelmässä Aurinko on sen verran matalalla, että zeniitinympäristön kaari (zyk) on irrallaan 46° renkaasta. Sen sijaan se on aina kiinni 46° ylläsivuavassa kaaressa. Kuva Olli Sälevä.

       

      Taivaan poikki lipuva viattoman näköinen cirrus-pilven kuitu voi yllättää siihen syttyvällä zeniitinympäristön kaarella. Kuva Mika Aho.

       

      Tavanomainen zeniitinympäristön kaaren esiintymä ei ole kovinkaan kirkas. Tässä kuvassa halo on merkitty nuolella. Näkyvillä on myös 22° rengas ja oikeanpuoleinen sivuaurinko. Kuva Jari Luomanen. 

       

      Zeniitinympäristön kaari (zyk) ei voi näkyä yli 32° valonlähteen korkeuksilla. Tässä ollaan simulaatioiden perusteella lähellä tuota raja-arvoa 29-30 asteessa. Pikkuruiseksi sirpiksi kutistunut zeniitinympäristön kaari on kuvassa ehkä juuri ja juuri irrallaan 46° renkaasta. Kuva Marko Riikonen.

       

       

      Zeniitinympäristönkaari (zyk) auton tuulilasin kuurassa. Valonlähteenä on kirkas led-valo. Kuva on pinottu noin kymmenestä kuvasta joiden välillä kameraa on liikutettu aavistuksen verran. Näin ilmiö saadaan paremmin vastaamaan intensiteetiltään sitä mitä se paljaalla silmällä katsoen oli. Kuva Marko Riikonen. 

    • Sundog info

      Sundog (or 22° parhelia) ovat värillisiä valoläikkiä Auringon molemmin puolin. Niiden etäisyys Auringosta muuttuu Auringon korkeuden mukaan. Matalalla Auringolla ne ovat 22 asteen etäisyydellä siitä. Mitä korkeammalle Aurinko nousee, sitä kauempana sivuauringot näkyvät ja sitä himmeämmiksi ne myös muuttuvat.

      Sivuaringot katoavat kun valonlähde nousee yli 60 asteen korkeudelle - Suomessa sekä Aurinko että Kuu pysyvät aina tätä matalammalla.  

      Jääsumussa sivuauringot ovat joskus häikäisevän kirkkaita. Tällöin on hyvät mahdollisuudet nähdä tuplasti kauempana Auringosta sijaitsevat, hyvin harvinaiset 44° sivuauringot.

      Sivuaurinkoja havaitaan jääsumussa myös ulkovalaisimilla. Tällöin ne ovat kaukaa katsottuna horisonttirengasmaisia valoviiruja, jotka ulottuvat korkeintaan 22 asteen etäisyydelle lampusta. Lähellä lamppua sivuauringot taipuvat kidevälkkeestä muodostuneena kolmiulotteisena pintana havaitsijan silmiin. Valokuvissa tämä vaikutelma ei kuitenkaan toistu, vaan näkyvillä on pelkät horisonttirengasmaiset viirut.

      Erikoinen paikka havaita sivuauringot on auton kuurainen tuulilasi. Haloille sopivia kiteitä muodostuu auton pinnoille varsin helposti. Parhaiten tällaiset halonäytelmät saadaan esiin pimeällä taskulampun valossa.

      Sivuaurinko on yleinen halo, jonka voi havaita noin 100 kertaa vuodessa. Usein se näkyy taivaalla varsin lyhyen aikaa.

       

      Sivuaurinkoja nähdään varsinkin kun Aurinko on matalalla. Kuva Mikko Peussa.

       

      Lyhytaikainen, yksinäinen sivuaurinko syttyy monesti pieneen pilvikuituun. Näin syntyneet sivuauringot voivat olla toisinaan hyvin kirkkaita. Kuva Marko Riikonen. 

       

      Kuun poikki kulkevalla kapealla lentokoneen jättövanalla näkyvät sivuauringot. Ne ovat yleisin jättövanoilla havaittava halo. Kuva Eetu Saarti.

       

      Kun jääsumussa loistavat näin kirkkaat sivuauringot, silloin kannattaa katsoa myös tuplasti kauemmaksi Auringosta. Siellä on hyvät mahdollisuudet nähdä harvinaiset 44° sivuauringot. Kuva Toivo Kiminki.

       

      Erillisissä kiteissä kimalteleva sivuaurinko. Kuva Sara Riihiaho.

       

      Suurella valonlähteen korkeudella sivuauringot ovat selvästi etääntyneet samaan aikaa näkyvästä 22° renkaasta. Kuva Jari Luomanen.

       

      Pilareita ja sivuaurinkoja laskettelurinteen lampuilla. Sivuauringot ovat lampuista vaakatasossa lähteviä valojuovia. Kuva Mika Aho.

       

      Halonäytelmä tuulilasissa. Sivuauringot on merkitty nuolilla. Värikäs kaari kuvan oikeassa alareunassa on zeniitinympäristönkaari. Valona on tuulilasin toisella puolella oleva led-lamppu. Kuva Jari Luomanen.

    • Sun pillar info

      Auringonpilari on valonlähteestä ylös- ja alaspäin jatkuva valopylväs. Ilmiö on sitä selkeämpi mitä matalammalla Aurinko on.

      Toisin kuin muut halot, pilarit ovat tavallisia kaikissa jääkidepilvissä. Niitä nähdään niin yläpilvissä, keski- ja alapilvistä syntyneissä jääkidepilvissä kuin jääsumuissa. Talvisin pimeän aikaan jääsumu synnyttää ulkovalaisinten ylle pilareita, jotka voivat ulottua jopa zeniittiin saakka. Luonnollisilla valonlähteillä pilari on huomattavasti lyhyempi.

      Pilarit ovat yleisiä ja usein se on halonäytelmän ainoa halomuoto. Auringolla tai kuulla pilarin voi nähdä yhteensä jopa 100 päivänä ja yönä vuodessa. Pilari saattaa kuitenkin jäädä helposti huomaamatta, koska se esiintyy lähinnä valonlähteen ollessa matalalla, jolloin se jää helposti piiloon näköesteiden taakse.

      Auringonpilariin liittyy erikoinen ilmiö nimeltä valeaurinko. Se on aivan Auringon juuressa, yleensä sen alapuolella näkyvä Auringon kuvajainen. Tyylipuhdas valeaurinko hämää havaitsijaa luulemaan sitä Auringoksi. Näin tapahtuu silloin kun itse Aurinko on näkymättömissä paksumman pilven takana. Joskus taas Aurinko voi olla näkyvillä, mutta on hankalaa sanoa kumpi on oikea Aurinko.

      Valeaurinkoja nähdään keski- ja alapilvistä satavassa jääkiteisessä virgassa.

       

      Talvinen auringonpilari näkyy keskipilviä vasten matalalla olevassa, mahdollisesti maanpinnalle saakka ulottuvassa jääkidekerroksessa. Kuva Kalle Hård.  

       

      Yläpilveen syntynyt auringonpilari. Kuva Mikko Peussa.

       

      Cirrus-pilvien kuiduissa näkyy kaksi erillistä auringonpilarin kirkastumaa. Kuva Mikko Peussa.  

       

      Auringonpilari matalista pilvistä satavissa jääkiteissä. Kuva Jukka Pakarinen.

       

      Silloin kun näkymä on matalalle horisonttiin, pilarissa voi näkyä selkeä kirkastuma horisontissa. Tässä valokuvassa kirkastuma on ainoa merkki pilarista. Kirkastuma syntyy koska jääsumukerros näennäisesti tiivistyy kohti horisonttia havaitsijasta kauemmaksi mentäessä. Kovin pienialaisessa jääsumussa kirkastumaa ei voine näkyä. Kuva Marko Riikonen.

       

      Jääsumuun syntyneitä ulkovalaisinten pilareita. Kuva Jari Luomanen.

       

      Aurinko ja valeaurinko. Havaitsija ei hetkeen tiennyt kumpi kahdesta häikäisevästä valopallosta oli oikea Aurinko. Kuvista näkyy että oikea Aurinko on näistä ylempi. Kuva Tiinamari Vilkko.

    • 22° halo info

      22° rengas on 22 asteen säteinen rengas valonlähteen ympärillä. Usein tästä halosta nähdään vain osa.

      Silloin tällöin 22° renkaan sisäpuoli on silmiinpistävän tumma. Näin käy kun halon aiheuttavat jääkiteet ovat optisesti hyvälaatuisia, jolloin ne eivät sirota juurikaan valoa renkaan sisäpuolelle.

      Talvella 22° rengas on mahdollista löytää varsin usein lumihangelta, missä se näkyy yleensä verraten harvojen kiteiden muodostamana spektrivärien kimalluksena. Sitä ei kannata sekoittaa väreiltään vieläkin näyttävämpään 46° renkaaseen, joka lumihangella on myös varsin tavallinen.

      Ulkovalaisimilla jääsumussa näkyvä 22° rengas ilmenee kolmiulotteisena sikarimaisena pintana, joka koostuu lukemattomien kiteiden välkähdyksistä. Lumen pinnalla tästä sikarista nähdään leikkauspinta, jolloin 22° rengas voi katsojan ja valon keskinäisestä sijainnista riippuen olla hyvin omituisen näköinen. Yleensä ulkovalaisimet ovat liian korkealla pinta-22° renkaan havaitsemiseksi ja siksi sen yleensä joutuu luomaan omalla valaisimella. 

      22° rengas on yleisin haloilmiö, sen voi taivaalla havaita noin 150 päivänä ja yönä vuodessa. 

       

      Yläpilveen syntynyt, osittainen 22° rengas Kuun valossa. Kuva Eetu Saarti.

       

      22° rengas yläpilvessä. Kuva Jari Luomanen.

       

      Täysi 22° rengas yläpilvessä. Kuva Jari Luomanen.

       

      22° rengas lumen pinnalla, yllä yksittäisessä kuvassa, alla 97 kuvan pinossa. Pintahalot osoittautuvat tyypillisesti pettymykseksi yksittäisissä ruuduissa. Pinoamalla päästään lähemmäksi visuaalista vaikutelmaa ja jopa sen yli. Pintahalosta otetaan useita kuvia niin että vaihdetaan paikkaa joka kuvan välillä esimerkiksi metrin verran. Otetut kuvat pinotaan tietokoneella yhdeksi summakuvaksi. Kuva Marko Riikonen. 

       

      Lampun valossa lumen pinnan 22° rengas ei välttämättä ympäröi valonlähdettä, kuten käy ilmi ylemmästä kuvasta, jossa se muodostaa lumelle suljetun silmuka. Alla kaavio selvittää miksi näin käy: ulkovalaisimilla 22° rengas on teoriassa sikarin muotoinen kolmiulotteinen pinta ja lumen pinnalla näemme tästä sikarista leikkauksen, joka kaaviossa on kuvattu punaisella. Lampun ja havaitsijan keskinäinen sijainti määrää millaisena 22° renkaan poikkileikkaus ilmenee. Kaavio Walt Tape.    

       

      Lampun valossa lumen pinnan 22° rengas ei välttämättä ympäröi valonlähdettä, kuten tässä kuvassa näkyy. Ylempänä oleva kaavio selvittää tilannetta. Vaihtamalla kaaviossa lampun ja havaitsijan paikkaa, päästään lähemmäksi tässä kuvassa ilmenevää tilannetta. Lampun ja havaitsijan keskinäinen asema määrää millaisena 22° renkaan poikkileikkaus ilmenee. Kuva Jarmo Leskinen.

       

      Lumen tai jään pinnalla näkyvä 22° rengas on silloin tällöin toispuoleinen, kuten tässä kuvassa. Kyse ei ollut siitä että toisella puolella ei olisi ollut sopivia jääkiteitä, sillä ilmiö näkyi samanlaisena kaikialla jäällä. Toispuoleisuuden voi selittää sillä, että pinnalle kasvaneet jääkiteet osoittavat kaikki suurinpiirtein samaan suuntaan. Kuva Marko Riikonen.

Comments: 7 pcs
Jari Luomanen - 18.12.2015 at 21.32 Report this

Joo, tämä tapaus osoittaa, että tällaista divergenttiä - siis hajavalon aiheuttamaa - kamaa voi tulla näemmä vanhalla tutulla HID-valollakin mukaan. Minä luulin, että se on nykyisen LED-lamppuni valokeilan ominaisuus. Homma onkin mitä ilmeisimmin kiteistä kiinni. Pitää olla otollista laattaa supersivuauringoille. Tässä nuo supersaurit ovat vielä selvemmät kuin minun kuvaamassani tapauksessa. Minäkin muuten olin todella kaukana lampusta kun kuvasin ne.

Diffraktiopilari saattaa tosiaan olla paljon luultua yleisempi ilmiö kunhan opimme ja muistamme kaivella sitä esiin sopivissa olosuhteissa. Näinhän se meneepi. :)

Jarmo Moilanen - 19.12.2015 at 11.23 Report this

Lampuissa tapaa olla se divergentti hajavaloalue, jossa voi useinkin nähdä divergentit alasaurit tai yläsaurit kun siirtyy sivuun beamistä. Kun nämä divergentit muodot ovat tarpeeksi kirkkaat, ne voivat tulla kyllä beamin keskeltäkin otettihin kuviin. Niin tässä kai on käynyt.

Lumiheijastus on myös mahdollinen ja oli ensimmäinen selity mitä itse epäilin ensin kun Mikkilä noita kuvia lähetteli tuossa aiemmin viikolla. Kidepilvessä lampun kirkkaimmin valaitsema osa hankea aiheuttaa lähes aina selvän pilarin. Ainakin Rovaniemellä käytetyn 75 W HID:llä heijastunut lamppupilari on lähes aina nähtävillä (75 W HID vastaa ainakin 180 W halogeenia).

Tuli tämän viikon kidemetsästyksen yhteydessä Rovaniemellä pohdittua sellaista, että jos tekisi maskin lampun eteen bloggaamaan hajavaloa niin voisi samalla kontrastikin kasvaa ja maski estäisi samalla nämäkin efektit. Toki, lisää kannettavaahan siitä tulee.

Jari Luomanen - 19.12.2015 at 11.34 Report this

Joo, se vain, että lukemattomia lamppunäytelmiä on kuvattu ja näitä ei ole keskeltä beamia tullut vastaan kuin kahdesti. Eli kiteiden ominaisuuksista on kyse. Ensin kun luultiin, että se liittyy nimenomaan LED-lampun voimakkaampaan hajavaloalueeseen ja ehkä se voi yhtenä selittävänä tekijänä olla edelleen.

Sehän on selvä, että lähellä lamppua valokeilasta sivussa supersaurit näkyvät aina kun kiteet sen mahdollistavat.

Minä olen kokeillut LED-valollani erilaisia maskeja, snoot- ja grid-tyylisiä ja ne sekoittivat valokeilan aivan täysin, siitä tuli epätasainen ja käyttökelvoton. Ilmeisesti siksi, että LED-valossa on useita ledejä eikä vain yksi valonlähde kuten HIDissä. Joten HIDillä voisivat toimia paremmin. Mutta ehkä joku hieman etäämpänä lampun lasista oleva suurikokoisempi maski voisi toimia.

Jarmo Moilanen - 19.12.2015 at 12.37 Report this

Juurikin noin. Pitää olla hyviä kiteitä että divergentit efektit olisivat riittävän kirkkaita tarttumaan beamin keskeltä kuviin. Niitä on aika harvoin. Näkymistä edesauttaa jos kidepilvessä ei ole paljoa roskakiteitä vaalentamassa taustaa.

Maskin kanssa menee kyllä helposti ojasta allikkoon. Maskin pitäisi olla nimenomaan iso ja jonkin matkaa lampun etupuolella. Helpoin on umpinainen laatikko, jossa on beamille lampun läpimittainen aukko etuseinässä. Silläkään ei saa kaikkea hajavaloa pois, mutta hajavalokeila pienenee (mitä pitempi laatikko, sitä enemmän) ja kasvattaa beamin ja hajavalon välistä kontrastia. Lampun lämpeneminen HIDllä voi tulla ongelmaksi.

Pelkän aukon tilalla voisi tietysti kokeilla paksua hunajakennoa, mutta sen saaminen oikeaan asentoon voi olla vaikeaa. Toisaalta paksu hunajakenno- tai pillimaski voisi toimia aivan lasin edessäkin. Maskin paksuuden pitäisi olla vähintään 5x aukkojen läpimitta, silloinkin hajavalokeila kutistuu vasta 22:een asteeseen. Tällainen maski luonnollisesti myös himmentää beamia hiukan.

Jari Luomanen - 19.12.2015 at 13.11 Report this

Joo. Tein mustalla mattakankaalla vuoratun noin 25 senttiä pitkän snoot-tyyppisen ohjaimen ja tulos on huono. Sitten kokeilin studiovaloista pöllittyä mustaa hunajakenno-gridiä suoraan lampun lasin edessä ja sitten tuon snootin päässä. Ei toiminut kumpikaan (ainakaan siis moniledivalon kanssa). Umpinainen, pitkä laatikko olisi se varmin ratkaisu.

Jostain ruumisarkku halvalla ja reikä päähän. Ei välttämättä tulisi koiranulkoiluttajat kyselemään, että mitäs teette, kun sen kanssa suuntailisi valokeilaa.

Jarmo Moilanen - 19.12.2015 at 13.37 Report this

Ok. Hyvä kuulla noista maskikokeiluista. Paras olisi tietysti optisesti suunniteltu lamppu, jossa hajavalon synty on eliminoitu mahdollisimman hyvin.

Jari Luomanen - 19.12.2015 at 13.44 Report this

Joo, HIDin kanssa nuo kyllä voisivat toimia paljon paremmin. Uskon, että siinä tulos olis kertaluokkaa parempi kuin moniledivalolla. Täytyisi vain löytää riittävän isoa putkea ja iso hunajakenno. Tai minulla taitaa olla studiokamoissa yksi beauty dishille sovitettu hunajakenno, se riittäisi HIDillekin. Pitääkin kaivaa HID tulille ja kokeilla joku ilta.

Send a comment

Comments are checked and moderated before publication If you want to contact the observer directly about possibilities to use these images, use the Media -form.

*

*

*
characters left

By sending in this comment I confirm, that I've read and understood the the observation system's privacy policy.